Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(12)2022 11 23.
Article in English | MEDLINE | ID: covidwho-2216889

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. From the onset of the pandemic, rapid antigen tests have quickly proved themselves to be an accurate and accessible diagnostic platform. The initial (and still most commonly used antigen tests) for COVID-19 diagnosis were constructed using monoclonal antibodies (mAbs) specific to severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP). These mAbs are able to bind SARS-CoV-2 NP due to high homology between the two viruses. However, since first being identified in 2019, SARS-CoV-2 has continuously mutated, and a multitude of variants have appeared. These mutations have an elevated risk of leading to possible diagnostic escape when using tests produced with SARS-CoV-derived mAbs. Here, we established a library of 18 mAbs specific to SARS-CoV-2 NP and used two of these mAbs (1CV7 and 1CV14) to generate a prototype antigen-detection lateral flow immunoassay (LFI). A side-by-side analysis of the 1CV7/1CV14 LFI and the commercially available BinaxNOWTM COVID-19 Antigen CARD was performed. Results indicated the 1CV7/1CV14 LFI outperformed the BinaxNOWTM test in the detection of BA.2, BA.2.12.1, and BA.5 Omicron sub-variants when testing remnant RT-PCR positive patient nasopharyngeal swabs diluted in viral transport media.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19 Testing , Pandemics , Sensitivity and Specificity , Immunoassay/methods , Antigens , Antibodies, Monoclonal
2.
J Pharmacol Exp Ther ; 381(2): 129-136, 2022 05.
Article in English | MEDLINE | ID: covidwho-2152871

ABSTRACT

The incidence of fatal drug overdoses in the United States is an alarming public health threat that has been exacerbated by the COVID-19 pandemic, resulting in over 100,000 deaths between April 2020 and April 2021. A significant portion of this is attributable to widespread access to fentanyl and other synthetic opioids, alone or in combination with heroin or psychostimulants, such as cocaine or methamphetamine. Monoclonal antibodies (mAb) offer prophylactic and therapeutic interventions against opioid overdose by binding opioids in serum, reducing distribution of drug to the brain and other organs. Here, we investigated the efficacy of a leading antifentanyl mAb, clone HY6-F9, in reversal and prevention of fentanyl-induced toxicity compared with the opioid receptor antagonist naloxone (NLX) in rats. In postexposure models, rats were challenged with fentanyl, followed by HY6-F9, NLX, or both. HY6-F9 reversed fentanyl-induced antinociception, respiratory depression, and bradycardia, and rats retained protection against additional challenges for at least 1 week. Although intravenous NLX reversed fentanyl-induced respiratory depression more rapidly than mAb alone, kinetics of reversal by intravenous mAb were similar to subcutaneous NLX. Coadministration of mAb and NLX provided greater protection than individual treatments against high doses of fentanyl. Prophylactic administration of mAb reduced the ED50 of NLX approximately twofold against 2.25 mg/kg of fentanyl. Finally, mAb sequestered fentanyl and its metabolite norfentanyl in serum and reduced brain concentrations of fentanyl. These results support the translation of mAb as medical interventions alone or in combination with NLX to prevent and reverse fentanyl-related overdose. SIGNIFICANCE STATEMENT: Fentanyl-related overdoses have increased dramatically in the US and worldwide. Currently, approved pharmacotherapies for treatment of opioid use disorder and reversal of overdose are not sufficient to curb the incidence of opioid-related deaths. Additionally, fentanyl and its potent analogs present a potential risk from use in deliberate poisoning or chemical attacks. This study demonstrates the use of monoclonal antibodies as a countermeasure to fentanyl-induced toxicity in pre- and postexposure scenarios, supporting their use in combination with the opioid antagonist naloxone.


Subject(s)
COVID-19 , Drug Overdose , Respiratory Insufficiency , Analgesics, Opioid/therapeutic use , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Drug Overdose/drug therapy , Fentanyl , Humans , Naloxone/pharmacology , Naloxone/therapeutic use , Narcotic Antagonists/pharmacology , Pandemics , Rats , Respiratory Insufficiency/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL